Adams, S. A., Matthews, C. E., Ebbeling, C. B., Moore, C. G., Cunningham, J. E., Fulton, J., & Hebert, J. R. (2005). The effect of social desirability and social approval on self-reports of physical activity.
American Journal of Epidemiology,
161(4), 389-398.
https://doi.org/10.1093/aje/kwi054
Barte, J. C. M., Veldwijk, J., Teixeira, P. J., Sacks, F. M., & Bemelmans, W. J. E. (2014). Differences in weight loss across different BMI classes: A meta-analysis of the effects of interventions with diet and exercise.
International Journal of Behavioral Medicine, 784-793.
https://doi.org/10.1007/s12529-013-9355-5
Belliveau, J., & Yakovenko, I. (2022). Evaluating and improving the quality of survey data from panel and crowd-sourced samples: A practical guide for psychological research.
Experimental and Clinical Psychopharmacology,
30(4), 400-408.
https://doi.org/10.1037/pha0000564
Bennett, G. G., Steinberg, D., Askew, S., Levine, E., Foley, P., Batch, B. C., Svetkey, L. P., Bosworth, H. B., Puleo, E. M., Brewer, A., DeVries, A., & Miranda, H. (2018). Effectiveness of an app and provider counseling for obesity treatment in primary care.
American Journal of Preventive Medicine,
55(6), 777-786.
https://doi.org/10.1037/11889-016
Binyamin, S. S., & Zafar, B. A. (2021). Proposing a mobile apps acceptance model for users in the health area: A systematic literature review and meta-analysis.
Health Informatics Journal,
27(1).
https://doi.org/10.1177/1460458220976737
Boas, T. C., Christenson, D. P., & Glick, D. M. (2020). Recruiting large online samples in the United States and India: Facebook, Mechanical Turk, and Qualtrics.
Political Science Research and Methods,
8(2), 232-250.
https://doi.org/10.1017/psrm.2018.28
Bollen, K. A., & Pearl, J. (2013). Eight myths about causality and structural equation models. In S. L. Morgan (Ed.),
Handbooks of causal analysis of social research (pp. 301-328). Springer:
https://doi.org/10.1007/978-94-007-6094-3_15
Byrne, B. M. (2001). Structural equation modeling with AMOS: Basic concepts, applications, and programming (1st ed). Taylor & Francis.
Chen, X., Chen, W., Liu, K., Chen, C., & Li, L. (2021). A comparative study of smartphone and smartwatch apps.
Proceedings of the ACM Symposium on Applied Computing, 1484-1493.
https://doi.org/10.1145/3412841.3442023
Cole, T. J., Faith, M. S., Pietrobelli, A., & Heo, M. (2005). What is the best measure of adiposity change in growing children: BMI, BMI %, BMI z-score or BMI centile?
European Journal of Clinical Nutrition,
59(3), 419-425.
https://doi.org/10.1038/sj.ejcn.1602090
Dahl, A. A., Dunn, C. G., Boutté, A. K., Crimarco, A., & Turner-McGrievy, G. (2018). Mobilizing mHealth for moms: a review of mobile apps for tracking gestational weight gain.
Journal of Technology in Behavioral Science,
3(1), 32-40.
https://doi.org/10.1007/s41347-017-0030-6
Dasgupta, K., Da Costa, D., Pillay, S., De Civita, M., Gougeon, R., Leong, A., Bacon, S., Stotland, S., Chetty, V. T., Garfield, N., Majdan, A., & Meltzer, S. (2013). Strategies to optimize participation in diabetes prevention programs following gestational diabetes: A focus group study.
PLoS ONE,
8(7).
https://doi.org/10.1371/journal.pone.0067878
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology.
Mis Quarterly,
13(3), 319-340.
DeLuca, J. R., & Bustad, J. J. (2017). ‘My baby and this mom body’: Examining post-partum bodywork through stroller fitness.
Qualitative Research in Sport, Exercise and Health,
9(1), 133-148.
https://doi.org/10.1080/2159676X.2016.1246472
DiPietro, L., Evenson, K. R., Bloodgood, B., Sprow, K., Troiano, R. P., Piercy, K. L., Vaux-Bjerke, A., & Powell, K. E. (2019). Benefits of physical activity during pregnancy and postpartum: An umbrella review.
Medicine & Science in Sports & Exercise,
51(6), 1292-1302.
https://doi.org/10.1249/MSS.0000000000001941.Benefits
Doherty, K., Barry, M., Marcano-Belisario, J., Arnaud, B., Morrison, C., Car, J., & Doherty, G. (2018). A mobile app for the self-report of psychological well-being during pregnancy (BrightSelf): Qualitative design study.
JMIR Mental Health,
5(4), e10007.
https://doi.org/10.2196/10007
Edney, S., Ryan, J. C., Olds, T., Monroe, C., Fraysse, F., Vandelanotte, C., Plotnikoff, R., Curtis, R., & Maher, C. (2019). User engagement and attrition in an app-based physical activity intervention: Secondary analysis of a randomized controlled trial.
Journal of Medical Internet Research,
21(11).
https://doi.org/10.2196/14645
Evans, W. D., Harrington, C., Patchen, L., Andrews, V., Gaminian, A., Ellis, L. P., & Napolitano, M. A. (2019). Design of a novel digital intervention to promote healthy weight management among postpartum African American women.
Contemporary Clinical Trials Communications,
16, 100460.
https://doi.org/10.1016/j.conctc.2019.100460
Evans, S. K., Pearce, K. E., Vitak, J., & Treem, J. W. (2017). Explicating affordances: A conceptual framework for understanding affordances in communication research.
Journal of Computer-Mediated Communication,
22(1), 35-52.
https://doi.org/10.1111/jcc4.12180
Falivene, M. A., & Orden, A. B. (2017). Maternal behavioral factors influencing postpartum weight retention. Clinical and metabolic implications.
Revista Brasileira de Saude Materno Infantil,
17(2), 251-259.
https://doi.org/10.1590/1806-93042017000200003
Fernandez, N., Copenhaver, D. J., Vawdrey, D. K., Kotchoubey, H., & Stockwell, M. S. (2017). Smartphone use among postpartum women and implications for personal health record utilization.
Clinical Pediatrics,
56(4), 376-381.
https://doi.org/10.1177/0009922816673438
Fogg, B. (2009). A behavior model for persuasive design.
The 4th International Conference on Persuasive Technology (Persuasive 09’), Article No. 40
Fogg, B. (1998). Persuasive computers: Perspectives and research directions.
CHI ’98: The SIGCHI Conference on Human Factors in Computing Systems, January). 225-232.
https://doi.org/10.1145/274644.274677
Godino, J. G., Merchant, G., Norman, G. J., Donohue, M. C., Marshall, S. J., Fowler, J. H., Calfas, K. J., & Huang, J. S. (2016). Using social and mobile tools for weight loss in overweight and obese young adults (Project SMART): A 2-year parallel group randomized controlled trial.
Lancet Diabetes Endocrinol,
4(9), 747-755.
https://doi.org/10.1016/S2213-8587(16)30105-X.Using
Guner, H., & Acarturk, C. (2020). The use and acceptance of ICT by senior citizens: a comparison of technology acceptance model (TAM) for elderly and young adults.
Universal Access in the Information Society,
19(2), 311-330.
https://doi.org/10.1007/s10209-018-0642-4
Hanley, S. J., Sibbick, E., Varley, I., Sale, C., & Elliott-Sale, K. J. (2022). Exercise interventions for weight management during pregnancy and up to 1 year postpartum among normal weight women and women with overweight and obesity: An updated systematic review.
Obesity Science and Practice,
8(5), 531-544.
https://doi.org/10.1002/osp4.597
Harrison, C. L., Brown, W. J., Hayman, M., Moran, L. J., & Redman, L. M. (2016). The role of physical activity in preconception, pregnancy and postpartum health.
Seminars in Reproductive Medicine,
34(2), e28-e37.
https://doi.org/10.1055/s-0036-1583530.The
He, X., Zhu, M., Hu, C., Tao, X., Li, Y., Wang, Q., & Liu, Y. (2015). Breast-feeding and postpartum weight retention: A systematic review and meta-analysis.
Public Health Nutrition,
18(18), 3308-3316.
https://doi.org/10.1017/S1368980015000828
Herring, S. J., Cruice, J. F., Bennett, G. G., Davey, A., & Foster, G. D. (2014). Using technology to promote postpartum weight loss in urban, low-income mothers: A pilot randomized controlled trial.
Journal of Nutrition Education and Behavior,
46(6), 610-615.
https://doi.org/10.1016/j.jneb.2014.06.002
Hirose, M., & Tabe, K. (2016). Responses to mhealth application on health behavior: A theoretical extension of the Technology Acceptance Model.
Developments in Marketing Science: Proceedings of the Academy of Marketing Science,
2011, 46-55.
https://doi.org/10.1007/978-3-319-24184-5_13
Hwang, K. O., Etchegaray, J. M., Sciamanna, C. N., Bernstam, E. V., & Thomas, E. J. (2014). Structural social support predicts functional social support in an online weight loss programme.
Health Expectations,
17(3), 345-352.
https://doi.org/10.1111/j.1369-7625.2011.00759.x
Johnston, C. A., Rost, S., Miller-Kovach, K., Moreno, J. P., & Foreyt, J. P. (2013). A randomized controlled trial of a community-based behavioral counseling program.
American Journal of Medicine,
126(12), 1143.e19-1143.e24.
https://doi.org/10.1016/j.amjmed.2013.04.025
Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed). The Guilford Press.
Koot, D., Goh, P. S. C., Lim, R. S. M., Tian, Y., Yau, T. Y., Tan, N. C., & Finkelstein, E. A. (2019). A mobile lifestyle management program (Glycoleap) for people with type 2 diabetes: Single-arm feasibility study.
JMIR MHealth and UHealth,
7(5), e12965.
https://doi.org/10.2196/12965
Larson-Meyer, D. E. (2002). Effect of postpartum exercise on mothers and their offspring: A review of the literature.
Obesity Research,
10(8), 841-853.
https://doi.org/10.1038/oby.2002.114
Leahy, K., Berlin, K. S., Banks, G. G., & Bachman, J. (2017). The relationship between intuitive eating and postpartum weight loss.
Maternal and Child Health Journal,
21(8), 1591-1597.
https://doi.org/10.1007/s10995-017-2281-4
Lee, H. E., & Cho, J. (2017). What motivates users to continue using diet and fitness apps? Application of the uses and gratifications approach.
Health Communication,
32(12), 1445-1453.
https://doi.org/10.1080/10410236.2016.1167998
Lehmann, M., Jones, L., & Schirmann, F. (2024). App engagement as a predictor of weight loss in blended-care interventions: Retrospective observational study using large-scale real-world data.
Journal of Medical Internet Research,
26, 1-13.
https://doi.org/10.2196/45469
Leonard, K. S., Adams, E. L., Savage, J. S., Paul, I. M., Kraschnewski, J. L., Pattison, K. L., Kjerulff, K. H., & Downs, S. D. (2021). Influence of prenatal perceived stress on postpartum weight retention is mediated by high gestational weight gain in women with overweight.
Clinical Obesity,
11(3).
https://doi.org/10.1111/cob.12446
Lim, S., Liang, X., Hill, B., Teede, H., Moran, L. J., & O’Reilly, S. (2019). A systematic review and meta-analysis of intervention characteristics in postpartum weight management using the TIDieR framework: A summary of evidence to inform implementation.
Obesity Reviews,
20, 1045-1056.
https://doi.org/10.1111/obr.12846
Lukoff, K., Yu, C., Kientz, J., & Hiniker, A. (2018). What makes smartphone use meaningful or meaningless?
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
2(1), 1-26.
https://doi.org/10.1145/3191754
Ma, Q., Chan, A. H. S., & Teh, P. L. (2021). Insights into older adults’ technology acceptance through meta-analysis.
International Journal of Human-Computer Interaction,
37(11), 1049-1062.
https://doi.org/10.1080/10447318.2020.1865005
Mascarenhas, M. N., Chan, J. M., Vittinghoff, E., Van Blarigan, E. L., & Hecht, F. (2018). Increasing physical activity in mothers using video exercise groups and exercise mobile apps: Randomized controlled trial.
Journal of Medical Internet Research,
20(5), 1-14.
https://doi.org/10.2196/jmir.9310
Maxwell, D., Robinson, S. R., & Rogers, K. (2019). “I keep it to myself”: A qualitative meta-interpretive synthesis of experiences of postpartum depression among marginalised women.
Health and Social Care in the Community,
27(3), e23-e36.
https://doi.org/10.1111/hsc.12645
McKay, F. H., Cheng, C., Wright, A., Shill, J., Stephens, H., & Uccellini, M. (2018). Evaluating mobile phone applications for health behaviour change: A systematic review.
Journal of Telemedicine and Telecare,
24(1), 22-30.
https://doi.org/10.1177/1357633X16673538
Montgomery, K. S., Bushee, T. D., Phillips, J. D., Kirkpatrick, T., Catledge, C., Braveboy, K., O’Rourke, C., Patel, N., Prophet, M., Cooper, A., Mosley, L., Parker, C., & Douglas, G. M. (2011). Women’s challenges with postpartum weight loss.
Maternal and Child Health Journal,
15(8), 1176-1184.
https://doi.org/10.1007/s10995-010-0681-9
Must, A., & Anderson, S. E. (2006). Body mass index in children and adolescents: Considerations for population-based applications.
International Journal of Obesity,
30(4), 590-594.
https://doi.org/10.1038/sj.ijo.0803300
Napolitano, M. A., Harrington, C. B., Patchen, L., Ellis, L. P., Ma, T., Chang, K., Gaminian, A., Bailey, C. P., & Evans, W. D. (2021). Feasibility of a digital intervention to promote healthy weight management among postpartum african american/black women.
International Journal of Environmental Research and Public Health,
18(4), 1-16.
https://doi.org/10.3390/ijerph18042178
Nicklas, J. M., Leiferman, J. A., Lockhart, S., Daly, K. M., Bull, S. S., & Barbour, L. A. (2020). Development and modification of a mobile health program to promote postpartum weight loss in women at elevated risk for cardiometabolic disease: Single-arm pilot study.
JMIR Formative Research,
4(4).
https://doi.org/10.2196/16151
Oh, B., Yi, G. H., Han, M. K., Kim, J. S., Lee, C. H., Cho, B., & Kang, H. C. (2018). Importance of active participation in obesity management through mobile health care programs: Substudy of a randomized controlled trial.
JMIR MHealth and UHealth,
6(1), e2.
https://doi.org/10.2196/mhealth.8719
Oh, J., Bellur, S., & Sundar, S. S. (2018). Clicking, assessing, immersing, and sharing: An empirical model of user engagement with interactive media.
Communication Research,
45(5), 737-763.
https://doi.org/10.1177/0093650215600493
Osma, J., Barrera, A. Z., & Ramphos, E. (2016). Are pregnant and postpartum women interested in health-related apps? Implications for the prevention of perinatal depression.
Cyberpsychology, Behavior, and Social Networking,
19(6), 412-415.
https://doi.org/10.1089/cyber.2015.0549
Patel, M. L., Hopkins, C. M., & Bennett Gary, G. (2019). Early weight loss in a standalone mHealth intervention predicting treatment success.
Obesity Science and Practice,
5(3), 231-237.
https://doi.org/10.1002/osp4.329
Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R. P., Moret, B. M. E., & Stamatakis, A. (2010). How many bootstrap replicates are necessary?
Journal of Computational Biology,
17(3), 337-354.
https://doi.org/10.1089/cmb.2009.0179
Phelan, S., Hagobian, T., Brannen, A., Hatley, K. E., Schaffner, A., Muñoz-Christian, K., & Tate, D. F. (2017). Effect of an Internet-based program on weight loss for low-income postpartum women a randomized clinical trial.
JAMA - Journal of the American Medical Association,
317(23), 2381-2391.
https://doi.org/10.1001/jama.2017.7119
Phillips, J., King, R., & Skouteris, H. (2014). The influence of psychological factors on post-partum weight retention at 9 months.
British Journal of Health Psychology,
19(4), 751-766.
https://doi.org/10.1111/bjhp.12074
Pietrobelli, A., Faith, M. S., Allison, D. B., Gallagher, D., Chiumello, G., & Heymsfield, S. B. (1998). Body mass index as a measure of adiposity among children and adolescents: A validation study.
Journal of Pediatrics,
132(2), 204-210.
https://doi.org/10.1016/S0022-3476(98)70433-0
Putri, M. F., Harahap, N. C., Pramudiawardani, S., Sensuse, D. I., & Sutoyo, M. A. H. (2019). Usage intention model for mobile health application: Uses and gratification perspective.
Proceedings of the International Conference on Electrical Engineering and Informatics, 500-505.
https://doi.org/10.1109/ICEEI47359.2019.8988801
Ritonga, C. M. T., Sofinia, H., Viky, M., & Rokibullah, (2022). The physiological changes In the postpartum period after childbirth.
Asian Journal of Social and Humanities. 01(03), 105-118.
https://ajosh.org/
Sampselle, C. M., Seng, J., Yeo, S., Killion, C., & Oakley, D. (1999). Physical activity and postpartum well-being.
Journal of Obstetric, Gynecologic, and Neonatal Nursing : JOGNN / NAACOG,
28(1), 41-49.
https://doi.org/10.1111/j.1552-6909.1999.tb01963.x
Serrano, K. J., Coa, K. I., Yu, M., Wolff-Hughes, D. L., & Atienza, A. A. (2017). Characterizing user engagement with health app data: a data mining approach.
Translational Behavioral Medicine,
7(2), 277-285.
https://doi.org/10.1007/s13142-017-0508-y
Serrano, K. J., Yu, M., Coa, K. I., Collins, L. M., & Atienza, A. A. (2016). Mining health app data to find more and less successful weight loss subgroups.
Journal of Medical Internet Research,
18(6), 1-11.
https://doi.org/10.2196/jmir.5473
Sherifali, D., Nerenberg, K. A., Wilson, S., Semeniuk, K., Ali, M. U., Redman, L. M., & Adamo, K. B. (2017). The effectiveness of eHealth technologies on weight management in pregnant and postpartum women: Systematic review and meta-analysis.
Journal of Medical Internet Research,
19(10), e337.
https://doi.org/10.2196/jmir.8006
Silfee, V. J., Lopez-Cepero, A., Lemon, S. C., Estabrook, B., Nguyen, O., Wang, M. L., & Rosal, M. C. (2018). Adapting a behavioral weight loss intervention for delivery via Facebook: A pilot series among low-income postpartum women.
JMIR Formative Research,
2(2).
https://doi.org/10.2196/formative.9597
Spaulding, E. M., Marvel, F. A., Piasecki, R. J., Martin, S. S., & Allen, J. K. (2021). User engagement with smartphone apps and cardiovascular disease risk factor outcomes: Systematic review.
JMIR Cardio,
5(1), 1-15.
https://doi.org/10.2196/18834
Stage, F. K., Carter, H. C., & Nora, A. (2004). Path analysis: An introduction and analysis of a decade of research.
Journal of Educational Research,
98(1), 5-13.
https://doi.org/10.3200/JOER.98.1.5-13
Sundar, S. S. (2008). The MAIN model : A heuristic approach to understanding technology effects on credibility. In M. J. Metzger & A. J. Flanagin (Eds.),
Digital media, youth, and credibility (pp. 73-100). MIT Press:
https://doi.org/10.1162/dmal.9780262562324.073
Sundar, S. S., Bellur, S., & Jia, H. (2012). Motivational technologies: A theoretical framework for designing preventive health applications. In M. Bang & E. L. Ragnemalm (Eds.),
Persuasive technology. Design for health and safety. PERSUASIVE 2012. Lecture Notes in Computer Science 7284, (pp. 112-122). Springer-Verlag: Berlin Heidelberg:
https://doi.org/10.1007/978-3-642-31037-9_10
Tabachnick, B. G., & Fidell, L. S. (2006). Using multivariate statistics (5th ed). Allyn & Bacon, Inc.
Talukder, M. S., Chiong, R., Bao, Y., & Hayat Malik, B. (2019). Acceptance and use predictors of fitness wearable technology and intention to recommend: An empirical study.
Industrial Management and Data Systems,
119(1), 170-188.
https://doi.org/10.1108/IMDS-01-2018-0009
Toro-Ramos, T., Heaner, M., Yang, Q., Deluca, L., Behr, H., Reynolds, K., Kim, Y., & Michaelides, A. (2021). Postpartum weight retention: A retrospective data analysis measuring weight loss and program engagement with a mobile health program.
Journal of Women’s Health,
30(11), 1645-1652.
https://doi.org/10.1089/jwh.2020.8584
van Beurden, S. B., Smith, J. R., Lawrence, N. S., Abraham, C., & Greaves, C. J. (2019). Feasibility randomized controlled trial of impulsepal: Smartphone app-based weight management intervention to reduce impulsive eating in overweight adults.
JMIR Formative Research,
3(2), e11586.
https://doi.org/10.2196/11586
van der Pligt, P., Ball, K., Hesketh, K. D., Crawford, D., Teychenne, M., & Campbell, K. (2018). The views of first time mothers completing an intervention to reduce postpartum weight retention: A qualitative evaluation of the mums OnLiNE study.
Midwifery,
56, September). (2017). 23-28.
https://doi.org/10.1016/j.midw.2017.09.013
van Strien, T., Frijters, J. E. R., Bergers, G. P. A., & Defares, P. B. (1986). The Dutch Eating Behavior Qusetionnaires (DEBQ) for assesmment of restraint, emotional, and external eating behavior. International Journal of Eating Disorders, 5(2), 295-315.
Vernon, M. M., Young-Hyman, D., & Looney, S. W. (2010). Maternal stress, physical activity, and body mass index during new mothers’ first year postpartum.
Women and Health,
50(6), 544-562.
https://doi.org/10.1080/03630242.2010.516692
Voth, E. C., Oelke, N. D., & Jung, M. E. (2016). A theory-based exercise app to enhance exercise adherence: A pilot study.
JMIR MHealth and UHealth,
4(2), 1-12.
https://doi.org/10.2196/mhealth.4997
Waring, M. E., Moore Simas, T. A., Oleski, J., Xiao, R. S., Mulcahy, J. A., May, C. N., & Pagoto, S. L. (2018). Feasibility and acceptability of delivering a postpartum weight loss intervention via Facebook: A pilot study.
Journal of Nutrition Education and Behavior,
50(1), 70-74.e1.
https://doi.org/10.1016/j.jneb.2017.09.025
Wu, X., Guo, X., & Zhang, Z. (2019). The efficacy of mobile phone apps for lifestyle modification in diabetes: Systematic review and meta-analysis.
JMIR MHealth and UHealth,
7(1).
https://doi.org/10.2196/12297
Zhao, Y., Ni, Q., & Zhou, R. (2018). What factors influence the mobile health service adoption? A meta-analysis and the moderating role of age.
International Journal of Information Management,
43, December). (2016). 342-350.
https://doi.org/10.1016/j.ijinfomgt.2017.08.006